ADDRESS ALL MAIL TGO
HON. SECRETARY.

145 LAVER 5T..
MACGREGOR,
QUEENSLAND 4109

DEAR trcdum Frogre on March Znd.

y .
ancther i EEW peopie,
Stuatng B ovisitors, ROME NEy
&
news) Matd - An invitation {rom Lhe
nange newsletters: The Fedesral Publizhing
;) ‘

Lo be

by maid eral capies of
thair handoul rnewslaelis = ansiuding
aurs! Morthern Byt Cog ‘o EZpiel,
Iliawarra newsiatters Wilbropr i on their compuier supplies lines! J
Sydtrug newsletisrs, the latest desaribs instailation of 1 megabyte RAM kit (z,

tsal: an offer of cheaper

$500) to Model 4F (suits Models &
Electironics, Bydney. anocther letter

modem/sotftware packages (Mode!
from Yictorian prisoner.
Business as usual reported by other Committee members,
GENERAL BUSINEES

A main was a proposal to have a workshop session at the hall cn the
morpning of our tar meetings, where more sonal tuition and dewmonstrations
on the machin can be done in small ups. About 0 members indicated
intention of attending the firsi =ession and was decided to have the first of

’ 85 0ns on Apral &th. the 1. it has hbeen found that the hall
vaitablie to 11 BOMGrN g, i has kindiy offered us iRz
at his house (only a ori distance fram the hall). The

a
ies downstairs
L REodney Street, Lindum. and vou turn FIGHT just before the vailway
Cin Kianawah Rd: 17 coming via Wynnum and Hiawdndn kds., drive paszst the
and shops. and Hodney is the second sireet on ihe right. Via Lvtton and
Lindum Rds., go past the tall and turn RIGHT, go across the orossing and
immediately turn LEFT, | i vation eto as above., For $2 3 head. Lance will
us and praovide eats at midday and ih zezion will he from 10 2.m,
Tt i Pfovou give ham A ring

fas)
in
m
in
i
=

to noon appro

(3%c 2998) about ing the workshoo., The normal
monihiy meeting will i: nlas 2 wsual at ithe Hall at 2 p.m.
H 1

Further work
a bit to make it a
features: - With
auxlnfy
tntEr;

te proceeding and the plans have been cranged
itity. Here is an outline of the ptanned

Glen MacDiarmid., we hope to soon have this
times con the vcomputer <(running m/1 with
Basic {excep ?1nu deynq Qﬂ’hu gtcl or either
the operating

1

—

mEANS *hxf and & Block of

i & m got : the zituatian
EauIE - iet and s menu of

nted on

i

If Debug is wanted instead. vou hold down <SHIFT: while pressing 1-2-3. 17
yau have a DLDL@E@ disk system (2x40 or 353-irack single dens.tv single siders --
thiz facility 1e going to be TOO LARGE to be practicable on & SZINGLE 40-tr sz od
systemi, vou will have to mount the disk with the chosen Helptfile at this point.
then the plan is to have the facility cursor diiven. 11 vou have a much larger
system, such as double siders/double densityv/B0-trackers stc. you will be abi
to have more tharn one Helpfile on a single disk. It seems likelv ithat a ful
file will be betweesn 60/80K. Each record will be in 25&-bvie modules, up to
modules -- .e. 1, Z or 3 sectors per record, so 4 lines on the screenm will be
avatiabie for instructions,

The__time_taken to_get this project into use will depend on_a LOT OF INFUT

WIGHT NOW from members_concerning the aclual informetion stored. 1711 take it
papar, writlen. printed or ASCII {iles or any suggestions will be carefully
constdered and 1711 do the formatiing.

I think 1475 an ideal project for combined effort from which we will learn

much and ¢t will thus knitt us into an even sironoer group. We will be ahkle to

l’_]J!-—J m =

upgrade it from time to time by issuing substitute Helpfilez. [believe we can
give our machines & tremendous wupgrade with this facility, which greatly
their vsefulness and I believe 1t will offer & great deal more than |

5
"2 expensive sachines, Won't i1 ke lavelv to he
1

currently available on much mor

atble to have prarfiral?v all the info vou'll ever need ai the touch of a few

weys instead of scratching around in books etec? Why nol let the computer do all
rd work? Isn’t 1t why we bought them? The idea can he easily evtended

taler to helpfi7e: for specific applications programs -- 50 vou <an access Lhe
program crib on the run without destvoving the program.

MEHEERS” FROBLEMEZ: Sorry, bui 1 ve mispizced mv notes (ihat’'s MY oprobiem:
-~ nevertheles =t problems tackled at the
meeting.

MEETING TOPIC. At ihe close aof the regular meeting, Alf West gave & lecture
covering the main points aof fh series of articles on N»wdm 80 f17e handling. 1
think we are learning a lat from all Alf's efforls. We're much obliged to Alf
for showing how NewdosBO runs rings around all oiher DOS's in this area. It's a
subject they (the other [DOZ propanents: keep very mum about. Many thanks. Alf,

The meeling closed at 4.10 pm,

the ha;
1

5. we managed to organise cures for mo

XT_MEETING (=ee General Business re Yorkshog) will be at the LINDUM
Lindum Rd Lindum, on Sunday, GPRIL_&4TH. starting at 2 P.M.

i rDH‘-’-H‘uQ an turn

[}
<<
m
-
ol

Comse via &ynmum Rd. and fnrn into Kianawah Rd.. go
1

teft or via Lyitton Rd., and turn into Lindum Rd. The hall is ¢ 100 vds Lindum
Railway Staticnl. After the main meeting. Dave Clarke will give a talk an thke
way infaormation s stored on tape and disk, to 7111 in for those who may have
got tost in the Superzap talk. Hoping ic see vou there -- in the meantime.
BETTERE CORFITING il Allen

Comput 48K interface. Green Screen Monitor, 2

401 FIvEE, O printer. alil power supplies. cables etc. some
sofiware w/ manualz and instructions. $800 the 1oi. Bieve Brandt 359 1379
aiter hours.,

i HModel I expansion untt (new! w/full memary fitted. $200. George
Cornwell, Z09 5Z3E.

Bobo Holmes wants to zeil the following surplus items: I Tandy 40-ir sz
drives, drives cable, printer cahle, numerous compuier books. Fhone 349 Té&é,

System B0 Blue Label with hi-res graphics unit {with suitable programs! and
expansion unil with double density board -- will separate. Contact Brian
Boettcher 248 3877 {(a.h.! or 222 5537 fb.h.).

TRS-80 Model 1 w/level | AND Z (s chable 48X on board, sound built in,

).
bigh speed mod, and lowercase fitted. i;UU. G. Dehayr, 204 {3589
Mcdel 4 complete with two standard disk drives. $120¢ o.n.o. Contact
Bill Allen 343 5771.

TRS-829 SYSTEM-89 COMPUTER GROUP

BEES « BYTES

ISSUE NO. 41

WHEN IS EASTER ?

As this issue of BITS & BYTES will be published around about Easter time, the
following three Basic programs which calculate the date when Easter Sunday falls
in any given year are topical.

The first program is from Jack Bognuda, the second was published in the last
isssue we received from “NORTHERN BYTES" Issue 6.8, and the third program was
one that our Editor had lying around in his bottom drawer. This third one has a
few more frills in that it calculates the date of Easter Sunday for each year
between any two given years and it will also send the results to the printer if
desired.

The editor of "Northern Bytes" had the request that if anyone could extract the
basic mathematical algorithm used in the program that he had published, to send
it to him as it could prove more useful in that format, particularly to readers
coding in languages other than Basic. Perhaps our mathematical buffs may be
able to set out the conditions involved, and the comments in the third program
below might give some clues. We will publish any comments that we receive in
our next issue.

Note: Except to say that all three programs gave the same date for the Easter
Sunday of the Public Easter Holiday this year, 1986, we accept no responsibilty
for the validity of the dates that any of the programs give over a wide range of
years, (nor for the difference in some religous faiths, for example using a
modified Gregorian calander, and the actual date of the Equinox).

Program # 1 - From Jack Bognuda

199 REM DATE OF EASTER SUNDAY

110 REM *** J BOGNUDA ***

120 CLS

130 INPUT "YEAR EG.1986 ";Y

140 N=Y: D=100: GOSUB 28@: B=Q: C=R

158 N=5*B+C: D=19: GOSUB 280: A=R

160 N=3*B+75: D=4: GOSUB 289: E=Q: F=R

170 N=8*B+88: D=25: GOSUB 280: G=Q

180 N=19*A+E-G: D=3@: GOSUB 28@: H=R

190 N=11*H+A: D=319: GOSUB 280: M=Q

200 N=300-60*F+C: D=4: GOSUB 28@: J=Q: K=R
218 N=2*J-K-H+M: D=7: GOSUB 288@: L=R

220 N=H-M+L+11@: D=3@: GOSUB 28f: S=Q: T=R
230 N=T+5-S: D=32: GOSUB 280: P=R

240 7ZS="APRIL": IF S$=3 THEN Z$="MARCH"

250 PRINT: PRINT " EASTER SUNDAY" Y" : "ZSP
260 PRINT: PRINT: GOTO 130

278 REM Subroutine for Quotient & Remainder
280 QO=INT(N/D): R=N-D*Q

290 RETURN

Program # 2 - From Northern Bytes

169
119
129
130
140
150
160
179
189
199
2008
219
229
230
249
250

260

REM DATE OF EASTER SUNDAY

REM *** FROM NORTHERN BYTES -~ ISSUE 6.8 *%%
CLS

INPUT "YEAR EG.1986 ";Y

N=Y~190¢

%=N/19

V=INT (Z)

A=(Z-V)*19: A=A+.05: A=INT(A*10) /10
B=((7*A)+1) /19: B=INT(B)

T=((11*A) +4-B) /29

M= (T-INT (T)) *29

Q=N/4: Q=INT(Q)

D= (N+Q+31-M) /7

W= (D-INT (D)) *7: W=W+.05: W=INT (W*10) /10
E=25-M-W: E=E+.05: E=INT(E*10) /10

PRINT: PRINT " EASTER SUNDAY" Y" : ";: IF E>(THEN PRINT"APRIL"E ELSE
PRINT"MARCH"E+31

PRINT: PRINT: GOTO 130

Program # 3 - From Editor's bottom drawer

5

10
20
3¢

40
5¢
69
70

89
99

1009
119
129
139
144
150
160
170
189
199
209
210
229
230
249
259
269
21789
280
290
304
319
3209
339
340
350

REM *** FROM SOURCE UNKNOWN ***

GOSUB 20: GOTO 30

CLS: PRINT@15,"™* EASTER TABILE *": RETURN

PRINT: PRINT"THIS PROGRAM WILL GIVE THE DATE OF EASTER SUNDAY FOR ANY YEARS"
:PRINT

INPUT"ENTER <L> IF PRINTER CONNECTED";L$

PRINT: INPUT"ENTER THE FIRST YEAR REQ'D. ";Z1

PRINT: INPUT"ENTER THE LAST YEAR REQ'D. ";Z2

IF 22<Z1 THEN PRINT"THAT'S LESS THAN YOUR FIRST YEAR - TRY AGAIN !": FOR T=1
TO 120@: NEXT: GOSUB 20: GOTO 50

CLS: PRINT"* THE DATES ON WHICH EASTER SUNDAY FALLS FROM"Z1"TO"Z2"*": PRINT
IF LS="L"THEN LPRINT"** THE DATES ON WHICH FASTER SUNDAY FALLS FROM "Z1" TO
"z2"M **": LPRINT

¥=71: GOSUB 400

REM Divide YEAR by 4, A=Remainder
A=Y-INT (Y/4)*4

REM Divide YEAR by 7, B=Remainder
B=Y-INT(Y/7)*7

REM Divide YEAR by 19, C=Remainder
C=Y-INT(Y/19)*19

REM Divide 19*C+P BY 3@ , D=Remainder
D= (19*C+P) —INT ((19*C+P) /30) *30

REM Divide 2A+4B+6D+Q by 7, E=Remalinder

E= (2*A+4*B+6*D+Q) — (INT ((2*A+4*B+6*D+Q) /7) *7)
REM F=Number of DAYS to EASTER SUNDAY after MARCH 22

F=D+E

G=22+F

IF G>31 GOTO 298

PRINT Y" EASTER SUNDAY IS MARCH "G

IF L$="L" THEN LPRINT ¥" MARCH "G

y=y+1: IF Y>72 THEN PRINT: END

GOTO 110

G=G-31

REM (EXCEPTION) If F=35 EASTER is APRIL 19, NOT APRIL 26

IF F=35 THEN G=G-7 :

REM (EXCEPTION) IF F=34 and D=28 and C>10 EASTER is APRIL 18, NOT APRIL 25
IF F=34 AND D=28 AND C<1§ THEN G=G-7

PRINT Y" EASTER SUNDAY IS APRIL "G

IF L$="L" THEN LPRINT Y" APRIL "G

Page No. Z

160 y=Y+1l: IF Y>Z2 THEN PRINT: END
370 GOTO 110

390 REM *** Subroutine to calculate P and Q
400 K=INT(Y/100)

410 L=INT (K/4)

4200 M=INT ((K-17)/25)

430 N=INT ((K-M)/3)

443 X=15+K-L~N

450 P=X-INT(X/3@)*30

460 7Z=4+K-L

470 Q=Z2-INT(Z/7)*7

480 RETURN

oo

ASSEMBLY LANGUAGE ROUTINES
by Glen McDiarmid

EXCHANGE TWO BLOCKS OF MEMORY
The following is a subroutine to mutually exchange two blocks of memory. It is 9
bytes long. Time taken is 59 T states per byte exchanged. HL contains the "FROM"
address, DE contains the "TO" address, and BC contains the number of bytes to be
exchanged.

199 SWAP LD A, (DE)
110 LDI

12¢ DEC HL

130 LD (HL) ,A
140 INC HL

158 RET PO

160 JR SWAP

If very particular about timing, the following subroutine is slightly faster (52
T states per byte), but is one byte longer.

100 SWAP LD a, (DE)

110 LDI

129 DEC HL

130 D (HL) ,A

140 INC HL

150 Jp PE, SWAP
160 RET

COMPARE TWO BLOCKS OF MEMORY
The following subroutine will compare two blocks of memory, byte for byte, and
RETurn with the Zero flag set if they are identical. HL points to one block, DE
points to the other, BC contains the size of the blocks. Size is 9 bytes, timing
is 66 T-states per byte compared. Registers HL,DE,BC and AF are used. On RETurn,
if the Dblocks are not identical, HL and DE will be pointing to the offending
bytes. Otherwise, they will be pointing to one byte past the end of the blocks.,

120 COMPARE LD A, (DE)
119 cp (HL)
120 RET NZ

130 XOR A

140 LDI

150 RET PO

160 JR COMPARE

Page No. 3

LOAD HL FROM HL INDIRECTLY

When using tables of 16-bit information (such as addresses), it is often
desirable to load HL from HL indirectly. The following is a subroutine which
will achieve this without affecting any other registers.

100 LD (HLINDR) ,HL
110 LD HL , (G900H)
120 HLINDR EQU $-2

130 RET

A ONE BYTE "SKIP" INSTRUCTION

It is possible to implement a one-byte "skip" instruction from some of the
unused ED opcodes. When the 780 comes across an ED code followed by one of the
codes in the list below, it simply adds 2 to the Program Counter. None of the
other registers are affected at all, not even the flags.

The Unused ED opcodes are:
@ to 3FH, 77H, 7FH, 80H to 9FH, OA4H to @ATH, OACH to QAFH,
#B4H to OB7H, OBCH to QFFH.

The following code:

100 BIT 4, (HL)
1109 JR 7 ,CLEAR
120 INC D

130 JR JOIN
149 CLEAR XOR A

158 JOIN (rest of code)

may be coded as:

100 BIT 4, (HL)
1109 JR z,CLEAR
129 INC D

139 DEEB QEDH
140 CLEAR XOR A

150 JOIN (rest of code)

In the second block of code, if bit 4 of (HL) is non-zero, line 120 (INC D)
will be executed, after which the CPU will execute an ED AF instruction (lines
130 and 140 combined), which will have the same effect as two NOP's, one after
the other. The timing is identical, too. (8 T states) The second block of code
is one byte shorter than the first, due to the one-byte skip instruction used.

oQo

SCROLL SCREEN ROUTINE
By Ronald J. Sully

This routine which will scroll the video screen either left or right is another
example of how we may extend the limit of BASIC into the machine language world.

There 1s very little I need to say about the program as the source code of the
machine language program includes a remark with every line and the BASIC
program is simple enough not to need explaning. I need to mention though that
the machine code is relocatable so 16K'ers can easily modify the BASIC program
to suit their machines. Line 40 of the BASIC program will need to be deleted as
it is appropriate to DISK BASIC only. Line 5@ serves the same purpose for LEVEL

Page No. 4

I suggest changing the &HFF
that the

2 but the memory address will need to be changed.
to &H7F. The memory addresses in line 3000 should then be changed so
line reads:

3000 FOR X = 327@4 TO 32760¢: READ Y: POKE X,Y: NEXT

The BASIC program will allow you to load and execute the machine language pro-
gram for demonstration purposes.

If you have any queries regarding either program please don't hesitate to see me
about them,

Source Listing

Q0019 ;SCROLL/CMD V1.0 Aug. 85

@o@30 ;By Ronald J. Sully

Qpo4e ;

$Q@58 VIDEO EQU 3CQ0H ;Start of VIDEO RAM

gp06d ;

goa7e ORG JFFCOH ;ORIGIN

JQe8g START CALL @A7FH ;Get Value in USR(N)

20099 BIT 1,L ;Test if 1 or 2

ag10e JR NZ ,RIGHT ;1f 2 goto RIGHT

0o1108 ;

$@128 LEFT LD HL ,VIDEO+1 ;VIDEO RAM

00138 LD DE,VIDEO ;Ditto

03140 LD B,16 ;No. of Lines

#0150 LOOPL PUSH BC ;Save Line count

J0169 LD A, (DE) ;Get Character

@a1749 LD BC,63 ;No. of Characters in Line
39189 LDIR ;Move ‘em

03190 LD (DE) ,A ;Restore Char. on other End
03200 INC HL ;Adjust to next Line

00210 INC DE ;Ditto

33229 POP BC ;Retrieve Line Count

302349 DIJNZ LOOPL ;Dec & continue if not @
30249 JR FINI :No more Lines

00250 ;

g@260 RIGHT LD HL ,VIDEO+62 s VIDEO RAM

ag27a LD DE,VIDEO+63 ;Ditto

303289 LD B,16 ;Line Count

33293 LOOPR PUSH BC ;Save it

00309 LD A, (DE) ;Get Character

20319 LD BC,63 ;No, of Characters to move
309320 LDDR ;Move 'em

20330 LD (DE) ,A ;Restore Char. to other end
29340 LD DE,127 ;Line Pointer in HL and
20350 ADD HL ,DE ; DE 1is decremented during
g0360 PUSH HL ; LDDR so adjustment is
093792 POP DE ; made by adding 127 to HL
29380 INC DE ; and 128 to DE.

33399 POP BC ;Retrieve Line Count

gu40¢ DJINZ LOOPR ;Dec & Continue if not @
go410 ;

@0429 FINI RET ;Back to BASIC

39430 END ; THAT'S ALL FOLKS

The Basic program to load

the following page.

the machine language program for a demonstration is on

Page No. 5

5 GOTO 19

7 SAVE"SCROLL/BAS": STOP

14 POKE 16561,190: POKE 16562,255
20 CLEAR 1009

3¢ GOSUB 3008

49 DEFUSR=&HFFCO: 'FOR DISK BASIC
5@ POKE 16526,&HCJ: POKE 16527,&HFF: 'FOR LEVEL 2
60 PRINT"

PRESS LEFT ARROW TO SCROLL LEET
OR RIGHT ARROW TO SCROLL RIGHT"
70 IS=INKEYS: IF IS$="" THEN 70 ELSE S=ASC(IS$)-7
75 IF $>2 THEN 70
80 X=USR(S)
9@ GOTO 79

2999 ' DATA STATEMENTS FOR MACHINE CODE

30@% FOR X=-64T0~-8: READ Y: POKE X,Y: NEXT

3¢1¢ RETURN

3020 DATA 205,127,10,203,77,32,23,33,1,60,17,0,69,6,16
3p3¢ paTa 197,26,1,63,0,237,176,18,35,19,193,16,243,24,26
3049 DATA 33,62,60,17,63,60,6,16,197,26,1,63,0,237,184
3p5¢ DATA 18,17,127,9,25,229,209,19,193,16,238,201

000

PRINTER PROBLEMS SOLVED ON A MODEL 4P
by Bill Allen (87) 343 5771

Most likely, this article also applies to the Model 4 as well as the 4P, but I
haven't had the opportunity to check it out on the Model 4.

Oon hooking up my Copal SC-1006a printer , an Epson workalike, with a plain
printer cable to my 4P, a lot of problems immediately became cbvious ~- I
couldn't get it to print! On my friend, Peter Goed's advice, I cut lines 28 to
33 inclusive on the printer cable just next to the plug on the computer end.
[Standing behind the computer and facing it (and with the plug in position), the
printer interface cable lines number 1 on the right (the same side as the power
switch on the front) to 34 on the left.] The printer came to life when asked to
do hard copy and operated satisfactorily after these lines were cut. But later,
when I tried to do underlining with Lazywriter, which with this printer must be
done by the two-pass method, the printer always did a line feed before making
the second pass, despite what I knew were correct parameters in the software
driver.

To do this underlining on the Copal, you also have to switch the auto line feed
off with dip switch #7 on the printer, so the software can control line feeds.
So, I went back to NEWDOS READY to check that the switch was indeed turned off
by dumping the screen to printer with JKL. 7o my amazement, it doggedly still
did line feeds! OK, I thought, maybe the Model 3 ROM image had some surprises
by the way of differences to the code I was used to on the System 80. No, that
idea proved fruitless. OK, try TRSDOS 6.2 -- what, still line feeds with the
dip switch #7 off! The answer MUST be in the hardware!

Looking up the printer interface connections for the 4P (for the umpteenth time)
and an extended phone call to Peter Goed, found the culprit -- Tine 26! The
Model 4/4P Technical manual gives the connections and they look normal enough.
But, some of the lines are designated as NC and to me, for the 1last 40 or so
years, this has meant that those pads aren't connected to anything (i.e.

Page No. 6

electrically isolated)! It seems that over there in Fort Worth, NC has a

different meaning -~ such as "DON'T connect anything to this line!" However, of
course, the Tandy printers are obviously wired with lines open at the printer
end or some subterfuge such as missing pins on the plug —— a typical Tandy

solution. Possibly these lines have some use in more (or maybe less) sophisti-
cated printers, as they turned out (from an inspection of a circuit diagram —-
obtained with great difficulty from a Workshop Manual) to be, in fact, connected
to logic gates on the interface -- but Tandy are keeping the relevant info under
their hats by hiding behind the NC in the Technical Manual. If we were in
possession of the facts before making up a cable, we could follow their method
of removing the unwanted pins from the plug instead of having to mutilate the
cable. I am undecided as to which method is really the best. At least theirs
looks tidier, but the cuts I made are concealed by the rear flap, anyway.

It turns out that the lines that definitely have to be cut or disconnected when
interfacing a 4P to this type of printer which is marketed under a variety of
badge engineering —- BMCl0@ etc) are: 33 NC), 31 (NC), 28 (Fault), and 26 (NC)
-—- the others (32,30,29 -- all N/As) were also cut, just in case. Once Line 26
was cut, I got the proper underlining function to work. This line 1is grounded
at the printer end and this somehow caused an automatic conversion of ALL
carriage returns to line feeds (pretty clever and rather unexpected for a
grounded NC!).

To assist any reader with similar problems, here are the Tandy pad designations
of the printer interface of the 4/4P, in case they are not in your possession
(Pad 1 is at the power switch side of the computer, 34 on the disk drives side):

UPPER SIDE PADS LOWER PADS
1. DATA STROBE 2. GND
3. DATA BIT @ 4, GND
5. DATA BIT 1 6. GND
7. DATA BIT 2 8. GND
9. DATA BIT 3 16. GND

11. DATA BIT 4 12. GND

13. DATA BIT 5 14, GND

15. DATA BIT 6 16, GND

17. DATA BIT 7 18, GND

19. N/A 20, GND

21. BUSY 22, GND

23. OUTPAPER 24. GND

25. UNIT SELECT 26, NC

27. GND 28, FAULT

29. N/A 30. N/A

3l. NC 32. N/A

33. NC 34, GND

To further confuse the issue, the 36-pin D-connector at the printer end of the
cable has a completely different numbering convention compared with the computer
end. Whereas the CABLE lines were numbered in sequence at the computer end, the
D-connector is numbered radially, the only common number with the other end
being line 1. Here is a comparison of the plug pin numbers for each line of the
cable:

Computer end/Printer end: 1/1, 2/36, 3/2, 4/35, 5/3, 6/34, 7/4, 8/33, 9/5,
106/32, 11/6, 12/31, 13/7, 14/3¢, 15/8, 16/29, 17/9, 18/28, 19/1¢, 20/27, 21/11,
22/26, 23/12, 24/25, 25/13, 26/24, 27/14, 28/23, 29/15, 39/22, 31/16, 32/21,
33/17, 34/20

(18 & 19 are not used on the D-connector because we are coming from a 34-way
interface to a 36-way connector and the 34-line cable doesn't reach pins 18-19).

Page No. 7

?MIDS =" FUNCTION
by Alf West

Most Members would be familiar with the "MIDS" function, but those graduating
from Level II to Disk Basic may not be so familiar with the "MIDS$=" function.
Perhaps the best way of illustrating the difference between the two functions is
by running and examining the following little program.

10¢ CLS: PRINT"USING THE 'MIDS' FUNCTION :-"
110 AS=“"ABCDEFGHIJKL": BS$="12345"

12¢ BS$=MIDS (AS,4,5)

13¢ PRINT"AS = "AS,"BS = "BS

200 PRINT: PRINT"NOW USE THE 'MIDS=' FUNCTION ="
213 AS="ABCDEFGHIJKL": BS="12345"

220 MIDS (AS,4,5)=B$

230 PRINT"AS = "A$,“B$ = "BS

In both sections of the program, we start off with the same strings for A$ and
BS (in Lines 11¢ and 210). The only difference is that :-

In Line 120 we make BS$ equal to MIDS(AS,4,5) whereas

In " 220 " MIDS(AS,4,5) equal to BS.

Wwith the "MIDS" function, AS$ is unchanged, and BS takes the value of that part
of AS$ we have nominated.

With the "MIDS=" function, BS$ is unchanged, but AS$ is modified and now includes
BS in the part of it that we specified.

Wwith both functions, it is normal to include two numbers in the bracket after
the string (AS$ in this case). What happens if the second number is not given?
Try it out and see for yourself - delete ",5" from lines 120 and 228. You will
note that with the "MIDS"™ function, the answer for BS is all the remainder of AS
from position 4. On the other hand, omitting the second number in the "MIDS$="
function doesn't make a scrap of difference to the answer for AS.

But let's look at "MIDS$=" a little more and now go back to the original program,
and in Line No, 210 make:
B$="1234567890123456789"

With Line 220 as it was initially, namely "MIDS (AS$,4,5)=B$" the answer for A$ is
the same as it was originally, as you might expect. Now delete the second
nurber, making MIDS (AS$,4)=BS. You might have anticipated that the answer for
AS would be "ABC" plus the whole string of numbers in B§, but not so. You'll
note that the length of A$ is no greater in length than it was originally - all
the additional characters in BS$ have been ignored.

It follows from this that by using "MIDS (AS,1)=B$", we can change the whole of
AS, if B$ has the same number of characters in it (or more) than did the
original AS - 12 characters in this example.

"MIDS" and "MIDS=" with the appropriate numbers, or number, both have their uses
in ordinary string manipulation. However the "™IDS (A$,1)=BS$" form of the
"MIDS=" function is particularly valuable in manipulating large amounts of data
and avoiding that dreaded string "hang-up" which can occur.

What causes these "hang-ups". Perhaps it can best be explained by imagining a
teacher in a class room, and asking the kids to give him a list of nouns. He
starts off with a clear blackboard, and on the first answer, he writes "A§ =
DOG". On the next answer, he crosses out DOG and writes CAT, then crosses that

Page No. 8

out and writes HORSE and so on and so on. But then the blackboard is full of
crossed out names, so the kids have to wait until the teacher cleans up the
blackboard before he can write the next name. That is virtually what happens in
the computer and with "silly" programming, I've had a "hang-up" last for nearly
three quarters of an hour, before it cleaned up the blackboard.

The situation can be worse 1if you say AS$="DOG", B$="CAT", C$="HORSE" etc.
because the computer is asked to keep these names as separate variables. The
amount of string space that is CLEARed must cater for all the different string
variables that are used in the program otherwise an "out of string space" error
will occur. Beyond that, then the more you CLFAR, the longer it will take for a
"hang-up" to occurr, but when it does, the longer it will take before the
program resumes running.

Coming back to the teacher and the blackboard, instead of what he did before,
we'll assume that he allocates a space on the blackboard for say 12 letters. He
puts the first answer DOG in that space. On the second answer of CAT, he rubs
out the previous letters and puts CAT in the same space. On the next answer,
HORSE, he rubs out and overwrites again and so on and so on and he can keep
going that way ad infinitum (assuming he has encugh chalk.) This in effect 1is
what happens using the "MIDS(AS,1)=BS" form of the "MIDS=" function and like the
teacher, the computer doesn't run out of blackboard or string space,

g
O

Just to show the difference in the action of the computer, with the
different methods used by the teacher, try firstly the following program :-—

100 CLEAR 10000@: DIMAS (20¢): CLS

119 PRINT@128,"INITIAL NAMES";

126 FOR J=1 TO 200

13¢ AS (J)="ABCDEFGHTJKLMNOPGRSTUV"+CHRS (64 +RND (26))
149 PRINT@148,CHRS (39) "NO."J TAB(35)A$(J)

15¢ NEXT

160 I=I+1

17¢ PRINT@128,"CHANGE NO."I;

138 GOTO120

Here we are making up a little list of only 200 names and to make it easy, in
Line 130 a random letter is added to a string just to make the names different.
After that, from Line 180 we are in effect, going to cross them out and put
another 200 names on the blackboard. Each name is 23 characters long, so one
set is 4600 bytes, and we will make our blackboard big enough to give us 10,000
bytes (CLEAR 1900@). Now RUN this program, and as can be expected from the
blackboard analogy, the computer hangs up for a while during the second change
while it cleans the blackboard, or cleans up the string space.

Now let us use the "MIDS=" function in the following program :-—

19¢ CLEAR 10000: DIMAS (200): CLS

192 FOR J=1 TO 200

104 A$(J)=STRINGS (23," ")

1@6 NEXT

110 PRINT@128,"INITIAL NAMES";

120 FOR J=1 TO 200

125 MIDS (AS (J) ,1)=STRINGS (23," ")

139 MIDS (AS(J) ,1)="ABCDEFGHIJKLMNOPGRSTUV"+CHRS (64+RND (26))
140 PRINT@L48,CHRS (30) "NO."J TAB(35)AS (J)
150 NEXT

160 I=I+1

17¢ PRINTRL28,"CHANGE NO."T;

180 GOTO120

Page No. 9

In this case we scarc with allocating a space on the blackiuard (in the string
space) for our 200 names, using Lines nos. 102 to 106. Notice the difference in
Line 130 where by using the "MIDS$=" function, the relevant name will go 1in the
space which has been allocated to it. From Line 180, we get to Line 125, which
is analogous to the teacher rubbing out the space ready to accept the new name,
(In this example, Line 125 is not strictly necessary because the names are all
the same length, and the new name would completely over-write the old one, but
it is necessary if the strings were different lengths.) RUN this second program
and you will find that you have no "hang-ups".

Perhaps the following comments may clear up some misconceptions about how the
free or CLEARed string space is used in the computer.

If the program has a line :- 120 AS = "THIS IS A NAME"
no free string space is used at all as the String A$ is located in Memory at the
point where it starts in the program line # 124.

On the other hand if the line was :- 120 INPUT" INPUT A NAME ";AS
whatever the operator input at this stage goes into the free string space as AS.

If the program includes DATA lines with words or strings which are later
READ as AS, B$, etc., no free string space is used as the pointers for AS, BS,
etc. will take on the addresses in Memory where those words or strings appear in
the program. This also applies if the words or strings are READ into an arrray

such as AS$(1l), AS(2), etc.

In general terms, if a string is specifically defined by word(s) within a
program no free string space is used. However if the string is defined in the
program indirectly, such as :- AS = STRINGS (18,42)

or AS = CHRS(191) + CHRS (145)
then the string A$ is set out in full in the free string space.

With the statements :—

A$ = LEFTS (etc... AS = RIGHT$(etC..._ AS = MIDS (etc...
the newly defined A$ is put into the free string space.
If a program statemnent was :- BS = AS

the newly defined B$ is put into the free string space.

Any string entered by the operator in response to :-—

INPUT LINE INPUT INKEYS (1 chara.)
will be put in the free string space (there is nowhere else). The first black-
board analogy applies every time these statements are used, even if the variable
say A3, was the same in every case.

No additional string space is used with the "MIDS$=" function, - only the
particular characters within the specified string, which already exists in the
string space, are changed.

In reading a data file, all the information in the file may be read and
printed on the screen or the printer, and the only free string space which will
be wused 1is that of the strings in the last record in the file. (the data is
read and printed from the file buffer,)

However 1if the items are put into arrays as the data file is read, then
every string in the data file will be put into the string space.

A data file buffer may be used for the manipulation of strings to reduce
the use of the free string space with such statements as :-
FIELD 1, 15 AS BS then LSET B$ = AS or RSET B$ = AS
No free string space is used for BS, but it depends upon how AS was defined (see
lines # 120 above) whether string space is used for AS.

o0o

Page No. 10

